Login / Signup

SARS-Cov-2 Interactome with Human Ghost Proteome: A Neglected World Encompassing a Wealth of Biological Data.

Tristan CardonIsabelle FournierMichel Salzet
Published in: Microorganisms (2020)
Conventionally, eukaryotic mRNAs were thought to be monocistronic, leading to the translation of a single protein. However, large-scale proteomics have led to a massive identification of proteins translated from mRNAs of alternative ORF (AltORFs), in addition to the predicted proteins issued from the reference ORF or from ncRNAs. These alternative proteins (AltProts) are not represented in the conventional protein databases and this "ghost proteome" was not considered until recently. Some of these proteins are functional and there is growing evidence that they are involved in central functions in physiological and physiopathological context. Based on our experience with AltProts, we were interested in finding out their interaction with the viral protein coming from the SARS-CoV-2 virus, responsible for the 2020 COVID-19 outbreak. Thus, we have scrutinized the recently published data by Krogan and coworkers (2020) on the SARS-CoV-2 interactome with host cells by affinity purification in co-immunoprecipitation (co-IP) in the perspective of drug repurposing. The initial work revealed the interaction between 332 human cellular reference proteins (RefProts) with the 27 viral proteins. Re-interrogation of this data using 23 viral targets and including AltProts, followed by enrichment of the interaction networks, leads to identify 218 RefProts (in common to initial study), plus 56 AltProts involved in 93 interactions. This demonstrates the necessity to take into account the ghost proteome for discovering new therapeutic targets, and establish new therapeutic strategies. Missing the ghost proteome in the drug metabolism and pharmacokinetic (DMPK) drug development pipeline will certainly be a major limitation to the establishment of efficient therapies.
Keyphrases