Login / Signup

The influence of HSP inducers on salinity stress in sterlet sturgeon (Acipenser ruthenus): In vitro study on HSP expression, immune responses, and antioxidant capacity.

Sevda ZareiHossein GhafouriLeila VahdatiraadBehrooz Heidari
Published in: Cell stress & chaperones (2024)
Heat shock proteins (HSPs) play a crucial role in antioxidant systems, immune responses, and enzyme activation during stress conditions. Salinity changes can cause stress and energy expenditure in fish, resulting in mortality, especially in fingerlings. The purpose of this study was to examine the relationship between salinity and HSPs in stressed fish by assessing the effects of various HSP inducers (HSPis), including Pro-Tex® (800 mM), amygdalin (80 mM), and a novel synthetic compound derived from pirano piranazole (80 µM), on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) exposed to 13 ‰ salinity (S13). After liver, kidney, and gill cells were cultured, the HSPi compounds were treated in vitro in the presence and absence of salinity. The expression patterns of HSP27, HSP70, and HSP90 were assessed by Western blotting. Biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), cortisol levels, and immune parameters (component 3, immunoglobulin M, and lysozyme) were measured before and after treatment with HSPis and HSPi + S13. According to these findings, HSPis positively modulate HSP expression, immune responses, and antioxidant levels. Furthermore, they increased in vitro cell survival by maintaining cortisol levels and biochemical enzyme activities in A. ruthenus under saline conditions (P < 0.0001). In conclusion, HSPis can increase A. ruthenus resistance to salinity stress. However, the results also indicated that these compounds can reverse the adverse effects of salinity. The effectiveness of this approach depends on further research into the effects of these ecological factors on the health status of the species, especially in vivo and in combination with other stresses.
Keyphrases