Login / Signup

Preclinical Study of DNA-Recognized Peptide Compound Pyrrole-Imidazole Polyamide Targeting Human TGF-β1 Promoter for Progressive Renal Diseases in the Common Marmoset.

Masari OtsukiNoboru FukudaTakashi InoueTakayuki MineshigeTomoyasu OtsukiShu HorikoshiMorito EndoMasanori Abe
Published in: Molecules (Basel, Switzerland) (2019)
Pyrrole-imidazole (PI) polyamides are novel gene silencers that strongly bind the promoter region of target genes in a sequence-specific manner to inhibit gene transcription. We created a PI polyamide targeting human TGF-β1 (hTGF-β1). To develop this PI polyamide targeting hTGF-β1 (Polyamide) as a practical medicine for treating progressive renal diseases, we examined the effects of Polyamide in two common marmoset models of nephropathy. We performed lead optimization of PI polyamides that targeted hTGF-β1 by inhibiting in a dose-dependent manner the expression of TGF-β1 mRNA stimulated by PMA in marmoset fibroblasts. Marmosets were housed and fed with a 0.05% NaCl and magnesium diet and treated with cyclosporine A (CsA; 37.5 mg/kg/day, eight weeks) to establish chronic nephropathy. We treated the marmosets with nephropathy with Polyamide (1 mg/kg/week, four weeks). We also established a unilateral urethral obstruction (UUO) model to examine the effects of Polyamide (1 mg/kg/week, four times) in marmosets. Histologically, the renal medulla from CsA-treated marmosets showed cast formation and interstitial fibrosis in the renal medulla. Immunohistochemistry showed strong staining of Polyamide in the renal medulla from CsA-treated marmosets. Polyamide treatment (1 mg/kg/week, four times) reduced hTGF-β1 staining and urinary protein excretion in CsA-treated marmosets. In UUO kidneys from marmosets, Polyamide reduced the glomerular injury score and tubulointerstitial injury score. Polyamide significantly suppressed hTGF-β1 and snail mRNA expression in UUO kidneys from the marmosets. Polyamide effectively improved CsA- and UUO-associated nephropathy, indicating its potential application in the prevention of renal fibrosis in progressive renal diseases.
Keyphrases