An enChIP system for the analysis of genome functions in budding yeast.
Hodaka FujiiToshitsugu FujitaPublished in: Biology methods & protocols (2022)
The identification of molecules associated with a specific genomic region is essential for elucidating the molecular mechanisms underlying genome functions such as transcription. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology that enables the purification of specific genomic regions and the subsequent identification of their associated molecules. In enChIP, the target genomic region is tagged with engineered DNA-binding molecules, such as variants of the clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 (dCas9) and a guide RNA. This article describes the generation of a plasmid expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-Sp-dCas9) and its successful expression in the budding yeast, Saccharomyces cerevisiae . Furthermore, we showed that this plasmid can be used for enChIP analysis in budding yeast. In addition, the plasmid may also be a useful tool for researchers analyzing genome functions such as transcription and for CRISPR interference experiments in budding yeasts.
Keyphrases