Ocimum basilicum and Lagenaria siceraria Loaded Lignin Nanoparticles as Versatile Antioxidant, Immune Modulatory, Anti-Efflux, and Antimicrobial Agents for Combating Multidrug-Resistant Bacteria and Fungi.
Lamiaa A El-SamahyYasmine H TartorAdel AbdelkhalekIoan PetMirela AhmadiSameh M El-NabtityPublished in: Antioxidants (Basel, Switzerland) (2024)
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum- loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) to find a solution for antimicrobial resistance. OB-LNPs and LS-LNPs were tested for their antimicrobial potential against Escherichia coli , Enterococcus faecalis , Klebsiella pneumoniae , Staphylococcus aureus , Salmonella enterica , Trichophyton mentagrophytes , Trichophyton rubrum , and Microsporum canis . OB-LNPs and LS-LNPs were further tested for their anti-efflux activity against ciprofloxacin-resistant Salmonella enterica strains and for treating Salmonella infection in a rat model. We also investigated the antifungal efficacy of OB-LNPs and LS-LNPs for treating T. rubrum infection in a guinea pig model. Both OB-LNPs and LS-LNPs showed strong antimicrobial potential against S . Typhimurium and T. rubrum infections. LS-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5-4 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.125-1 µg/mL. OB-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5-2 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.25-2 µg/mL. OB-LNPs and LS-LNPs downregulated the expression of ramA and acrB efflux pump genes (fold change values ranged from 0.2989 to 0.5434; 0.4601 to 0.4730 for ramA and 0.3842-0.6199; 0.5035-0.8351 for acrB ). Oral administration of OB-LNPs and LS-LNPs in combination with ciprofloxacin had a significant effect on all blood parameters, as well as on liver and kidney function parameters. Oxidative stress mediators, total antioxidant capacity, and malondialdehyde were abolished by oral administration of OB-LNPs and LS-LNPs (0.5 mL/rat once daily for 5 days). Interferon-γ and tumor necrosis factor-α were also reduced in comparison with the positive control group and the ciprofloxacin-treated group. Histopathological examination of the liver and intestine of OB-LNPs and LS-LNPs-treated rats revealed an elevation in Salmonella clearance. Treatment of T. rubrum -infected guinea pigs with OB-LNPs and LS-LNPs topically in combination with itraconazole resulted in a reduction in lesion scores, microscopy, and culture results. In conclusion, OB-LNPs and LS-LNPs possess immunomodulatory and antioxidant potential and can be used as naturally derived nanoparticles for drug delivery and treatment of Salmonellosis and dermatophytosis infections.
Keyphrases
- escherichia coli
- oxidative stress
- drug delivery
- staphylococcus aureus
- multidrug resistant
- klebsiella pneumoniae
- pseudomonas aeruginosa
- ionic liquid
- poor prognosis
- dna methylation
- rheumatoid arthritis
- cystic fibrosis
- risk assessment
- transcription factor
- signaling pathway
- candida albicans
- gram negative
- human health
- high throughput
- biofilm formation
- acinetobacter baumannii
- high speed
- fatty acid