Essential Oil Microemulsions Inactivate Antibiotic-Resistant Bacteria on Iceberg Lettuce during 28-Day Storage at 4 °C.
Stephanie ArellanoLibin ZhuGovindaraj Dev KumarBibiana LawMendel FriedmanSadhana RavishankarPublished in: Molecules (Basel, Switzerland) (2022)
The objective of this study was to investigate the antimicrobial activities of essential oil-based microemulsions in the wash water against Escherichia coli O157:H7 and Pseudomonas fluorescens on Iceberg lettuce. Evaluated wash microemulsions included oregano oil, lemongrass oil, and cinnamon oil, along with a plant-based emulsifier for improved solubility. Iceberg lettuce was inoculated for 2 min with E. coli O157:H7 (6.0 log CFU/g) or P. fluorescens (6.0 log CFU/g) and then dip-treated in a phosphate buffered saline (PBS) control, 50 ppm chlorine, 3% hydrogen peroxide treatment or a 0.1%, 0.3%, or 0.5% microemulsion solution. Treated leaves were stored at 4 °C, and analyzed for surviving bacteria on days 0, 3, 7, 10, 14, 21, and 28. Efficacies of the antimicrobials were concentration and storage-time dependent. There was a 1.26-4.86 log CFU/g reduction in E. coli O157:H7 and significant reductions (0.32-2.35 log CFU/g) in P. fluorescens during storage at days 0-28 ( p < 0.05). The 0.1% oregano oil microemulsion resulted in the best visual appeal in Iceberg leaves inoculated with E. coli O157:H7 and showed better improvement in the quality of the Iceberg leaves inoculated with spoilage bacteria P. fluorescens . The results suggest that 0.5% cinnamon and 0.3% oregano oil treatments have the potential to provide natural, eco-friendly, and effective alternatives to chemicals for the decontamination of leafy greens, eliminating E. coli O157:H7 and P. fluorescens .