Effects of grape and pomegranate waste extracts on poultry carcasses microbial, chemical, and sensory attributes in slaughterhouse.
Majid Javanmard DakheliPublished in: Food science & nutrition (2020)
Contamination of poultry carcasses is considered as a critical point in the evaluation of poultry meat safety. The present study aimed at determining the decontamination effects of natural antimicrobial derived from grape waste extract and pomegranate waste extract (GWE and PWE) on poultry carcasses in a slaughterhouse. Poultry carcasses were treated in chiller with concentrations of 0, 2, 4 and 6% of pomegranate and grape waste extracts. Pomegranate and grape waste extracts contained 432.20 and 328.43 mg GAE/g total phenolic compounds. These extracts showed significant antimicrobial effect on the main poultry bacteria in vitro. On the first day of cold storage, significant reduction in total bacterial counts (p < .05) was observed in treated carcasses. After 3 days of storage time, total bacteria, Staphylococcus aureus, and Escherichia coli reduced significantly (p < .05) compared to untreated samples. At sixth and ninth days of storage time, significant reduction in total volatile nitrogen (TVN), total bacteria counts, Staphylococcus aureus, coliforms, and Escherichia coli were observed. Sensory attributes in treated carcasses with PWE and GWE have been enhanced significantly compared to untreated during acceptable shelf time (p < .05). Based on the results, pomegranate and grape waste extracts can be used to preserve and improve the shelf life of the poultry carcasses close to the standard range until the ninth day of storage. Application of pomegranate and grape waste extracts in slaughterhouse could be considered as an environmentally, natural and safe decontamination intervention in integral food safety system.
Keyphrases
- staphylococcus aureus
- heavy metals
- escherichia coli
- sewage sludge
- municipal solid waste
- antimicrobial resistance
- life cycle
- risk assessment
- biofilm formation
- randomized controlled trial
- oxidative stress
- health risk
- microbial community
- methicillin resistant staphylococcus aureus
- pseudomonas aeruginosa
- multidrug resistant