Login / Signup

Pulsed Electric Field-Assisted Enzymatic and Alcoholic-Alkaline Production of Porous Granular Cold-Water-Soluble Starch: A Carrier with Efficient Zeaxanthin-Loading Capacity.

Huanqing LeiZhongjuan LiaoLanghong WangXinan ZengZhong Han
Published in: Foods (Basel, Switzerland) (2023)
In this study, porous starch was modified using pulsed electric field (PEF) pretreatment and alcoholic-alkaline treatment to prepare porous granular cold-water-soluble starch (P-GCWSS). The soluble porous starch has high adsorption capability and high cold water solubility, allowing effective encapsulation of zeaxanthin and improving zeaxanthin's water solubility, stability, and bioavailability. The physical and chemical properties of GCWSS and complex were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that the cold water solubility of the pulsed electric field-treated porous granular cold-water-soluble starch (PEF-P-GCWSS) increased by 12.81% compared to granular cold-water-soluble starch (GCWSS). The pulsed electric field treatment also increased the oil absorption of PEF-P-GCWSS was improved by 15.32% compared to porous granular cold-water-soluble starch (P-GCWSS). PEF-P-GCWSS was effective in encapsulating zeaxanthin, which provided a good protection for zeaxanthin. The zeaxanthin-saturated solubility in water of PPG-Z was increased by 56.72% compared with free zeaxanthin. The zeaxanthin embedded in PEF-P-GCWSS was able to be released slowly during gastric digestion and released rapidly during intestinal digestion.
Keyphrases