Postharvest Application of Acibenzolar-S-methyl Delays the Senescence of Pear Fruit by Regulating Reactive Oxygen Species and Fatty Acid Metabolism.
Xue LiCanying LiYuan ChengJiabao HouJunhu ZhangYonghong GePublished in: Journal of agricultural and food chemistry (2020)
This study investigated the changes in enzyme activity and gene expression in reactive oxygen species (ROS) and fatty acid metabolism in Docteur Jules Guyot pears after acibenzolar-S-methyl (ASM) treatment to elucidate the role of ROS and fatty acid metabolism in senescence. The results demonstrated that applying ASM postharvest significantly suppressed H2O2 content and enhanced catalase and superoxide dismutase activities in pears. Ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase activities and the reduced glutathione content in pears were also induced by ASM. Postharvest ASM dipping remarkably enhanced PcSOD, PcCAT, PcAPX, and PcDHAR expressions and fatty acid synthetase activity in pears. Postharvest applying ASM significantly decreased malondialdehyde content and lipoxygenase, hydroperoxidelyase, alcohol dehydrogenase, and alcohol acyltransferase activities in pears. ASM distinctly inhibited PcPLD, PcLOX, PcHPL, PcADH, and PcAAT expressions in pears. The findings suggest that postharvest applying ASM could modulate ROS and fatty acid metabolism to delay senescence in pears.