Login / Signup

In-depth analysis of patterns in selection of different physiologically based pharmacokinetic modeling tools: PartI - Applications and rationale behind the use of open source-code software.

Arham Jamaal RajputHamza Khaled Abdelmajed AldibaniAmin Rostami-Hodjegan
Published in: Biopharmaceutics & drug disposition (2023)
PBPK applications published in the literature support a greater adoption of non-open source-code (NOSC) software as opposed to open source-code (OSC) alternatives. However, a significant number of PBPK modelers are still using OSC software, understanding the rationale for the use of this modality is important and may help those embarking on PBPK modeling. No previous analysis of PBPK modeling trends has included the rationale of the modeler. An in-depth analysis of PBPK applications of OSC software is warranted to determine the true impact of OSC software on the rise of PBPK. Publications focussing on PBPK modeling applications, which used OSC software, were identified by systematically searching the scientific literature for original articles. A total of 171 articles were extracted from the narrowed subset. The rise in the use of OSC software for PBPK applications was greater than the general discipline of pharmacokinetics (9 vs. 4), but less than the overall growth of the PBPK area (9 vs. 43). Our report demonstrates conclusively that the surge in PBPK usage is primarily attributable to the availability and implementations of NOSC software. Modelers preferred not to share the reasons for their selection of certain modeling software and no 'explicit' rationale was given to support the use of OSC analysed by this study. As the preference for NOSC versus OSC software tools in the PBPK area continues to be divided, initiatives to add the rationale in using one form over another to every future PBPK modeling report will be a welcomed and informative addition.
Keyphrases
  • data analysis
  • clinical trial
  • systematic review
  • randomized controlled trial
  • optical coherence tomography
  • electronic health record