Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring.
Lorena SaittaEmanuela CutuliGiovanni CelanoClaudio TostoDario SanalitroFrancesca M GuarinoGianluca CicalaAnd Maide BucoloPublished in: Polymers (2023)
In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PμSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PμSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 μm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.
Keyphrases
- single cell
- ionic liquid
- induced apoptosis
- high resolution
- high speed
- drug release
- saccharomyces cerevisiae
- cell therapy
- cell cycle arrest
- high throughput
- magnetic resonance imaging
- oxidative stress
- endoplasmic reticulum stress
- optical coherence tomography
- cell proliferation
- pi k akt
- cell wall
- simultaneous determination