In vitro Screening of Herbal Medicinal Products for Their Supportive Curing Potential in the Context of SARS-CoV-2.
Hoai Thi Thu TranPhilipp PeterbursJan SeibelDimitri Abramov-SommarivaEvelyn LamyPublished in: Evidence-based complementary and alternative medicine : eCAM (2022)
COVID-19 herbal medicinal products may have the potential for symptom relief in nonsevere or moderate disease cases. In this in vitro study we screened the five herbal medicinal products Sinupret extract (SINx), Bronchipret thyme-ivy (BRO-TE), Bronchipret thyme-primula (BRO TP), Imupret (IMU), and Tonsipret (TOP) with regard to their potential to (i) interfere with the binding of the human angiotensin-converting enzyme 2 (ACE2) receptor with the SARS-CoV-2 spike S1 protein, (ii) modulate the release of the human defensin HBD1 and cathelicidin LL-37 from human A549 lung cells upon spike S1 protein stimulation, and (iii) modulate the release of IFN- γ from activated human peripheral blood mononuclear cells (PBMC). The effect of the extracts on the interaction of spike S1 protein and the human ACE2 receptor was measured by ELISA. The effects on the intracellular IFN- γ expression in stimulated human PBMC were measured by flow cytometry. Regulation of HBD1 and LL-37 expression and secretion was assessed in 25 d long-term cultured human lung A549 epithelial cells by RT-PCR and ELISA. IMU and BRO-TE concentration-dependently inhibited the interaction between spike S1 protein and the ACE2 receptor. SINx, TOP, and BRO-TE significantly upregulated the intracellular expression of anti-viral IFN- γ from stimulated PBMC. Cotreatment of A549 cells with IMU or BRO TP together with SARS-CoV-2 spike protein significantly upregulated mRNA expression (IMU) and release of HBD1 (IMU and BRO TP) and LL-37 (BRO TP). The in vitro screening results provide first evidence for an immune-activating potential of some of the tested herbal medicinal extracts in the context of SARS-CoV-2. Whether these could be supportive in symptom relief or curing from SARS-CoV-2 infection needs deeper understanding of the observations.
Keyphrases
- sars cov
- endothelial cells
- binding protein
- angiotensin converting enzyme
- induced pluripotent stem cells
- poor prognosis
- respiratory syndrome coronavirus
- pluripotent stem cells
- angiotensin ii
- induced apoptosis
- amino acid
- oxidative stress
- protein protein
- signaling pathway
- long non coding rna
- climate change
- high intensity
- small molecule
- cell death
- anti inflammatory