Human and machine validation of 14 databases of dynamic facial expressions.
Eva G KrumhuberDennis KüsterShushi NambaLina SkoraPublished in: Behavior research methods (2021)
With a shift in interest toward dynamic expressions, numerous corpora of dynamic facial stimuli have been developed over the past two decades. The present research aimed to test existing sets of dynamic facial expressions (published between 2000 and 2015) in a cross-corpus validation effort. For this, 14 dynamic databases were selected that featured facial expressions of the basic six emotions (anger, disgust, fear, happiness, sadness, surprise) in posed or spontaneous form. In Study 1, a subset of stimuli from each database (N = 162) were presented to human observers and machine analysis, yielding considerable variance in emotion recognition performance across the databases. Classification accuracy further varied with perceived intensity and naturalness of the displays, with posed expressions being judged more accurately and as intense, but less natural compared to spontaneous ones. Study 2 aimed for a full validation of the 14 databases by subjecting the entire stimulus set (N = 3812) to machine analysis. A FACS-based Action Unit (AU) analysis revealed that facial AU configurations were more prototypical in posed than spontaneous expressions. The prototypicality of an expression in turn predicted emotion classification accuracy, with higher performance observed for more prototypical facial behavior. Furthermore, technical features of each database (i.e., duration, face box size, head rotation, and motion) had a significant impact on recognition accuracy. Together, the findings suggest that existing databases vary in their ability to signal specific emotions, thereby facing a trade-off between realism and ecological validity on the one end, and expression uniformity and comparability on the other.
Keyphrases
- deep learning
- soft tissue
- endothelial cells
- big data
- machine learning
- poor prognosis
- depressive symptoms
- autism spectrum disorder
- sensitive detection
- randomized controlled trial
- binding protein
- mental health
- systematic review
- gold nanoparticles
- mass spectrometry
- risk assessment
- emergency department
- transcription factor
- adverse drug
- high intensity
- long non coding rna
- high speed
- drug induced
- clinical evaluation