Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq.
Roger S ZouYang LiuOscar E Reyes GaidoMaximilian F KonigBrian J MogLeo L ShenFranklin Aviles-VazquezAlberto Marin-GonzalezTaekjip HaPublished in: Nature methods (2023)
Discovery of off-target CRISPR-Cas activity in patient-derived cells and animal models is crucial for genome editing applications, but currently exhibits low sensitivity. We demonstrate that inhibition of DNA-dependent protein kinase catalytic subunit accumulates the repair protein MRE11 at CRISPR-Cas-targeted sites, enabling high-sensitivity mapping of off-target sites to positions of MRE11 binding using chromatin immunoprecipitation followed by sequencing. This technique, termed DISCOVER-Seq+, discovered up to fivefold more CRISPR off-target sites in immortalized cell lines, primary human cells and mice compared with previous methods. We demonstrate applicability to ex vivo knock-in of a cancer-directed transgenic T cell receptor in primary human T cells and in vivo adenovirus knock-out of cardiovascular risk gene PCSK9 in mice. Thus, DISCOVER-Seq+ is, to our knowledge, the most sensitive method to-date for discovering off-target genome editing in vivo.