Scale Alignment in the Between-Item Multidimensional Partial Credit Model.
Leah M FeuerstahlerMark WilsonPublished in: Applied psychological measurement (2021)
In between-item multidimensional item response models, it is often desirable to compare individual latent trait estimates across dimensions. These comparisons are only justified if the model dimensions are scaled relative to each other. Traditionally, this scaling is done using approaches such as standardization-fixing the latent mean and standard deviation to 0 and 1 for all dimensions. However, approaches such as standardization do not guarantee that Rasch model properties hold across dimensions. Specifically, for between-item multidimensional Rasch family models, the unique ordering of items holds within dimensions, but not across dimensions. Previously, Feuerstahler and Wilson described the concept of scale alignment, which aims to enforce the unique ordering of items across dimensions by linearly transforming item parameters within dimensions. In this article, we extend the concept of scale alignment to the between-item multidimensional partial credit model and to models fit using incomplete data. We illustrate this method in the context of the Kindergarten Individual Development Survey (KIDS), a multidimensional survey of kindergarten readiness used in the state of Illinois. We also present simulation results that demonstrate the effectiveness of scale alignment in the context of polytomous item response models and missing data.