Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways.
Christina C BartenschlagerMilena GriegerJohanna ErberTobias NeidelStefan BorgmannJörg J VehreschildMarkus SteinbrecherSiegbert RiegMelanie StecherChristine DhillonMaria M RuethrichCarolin E M JakobMartin HowerAxel R HellerMaria VehreschildChristoph WyenHelmut MessmannChristiane PiepelJens Otto BrunnerFrank HansesChristoph Römmelenull nullPublished in: Health care management science (2023)
The Covid-19 pandemic has pushed many hospitals to their capacity limits. Therefore, a triage of patients has been discussed controversially primarily through an ethical perspective. The term triage contains many aspects such as urgency of treatment, severity of the disease and pre-existing conditions, access to critical care, or the classification of patients regarding subsequent clinical pathways starting from the emergency department. The determination of the pathways is important not only for patient care, but also for capacity planning in hospitals. We examine the performance of a human-made triage algorithm for clinical pathways which is considered a guideline for emergency departments in Germany based on a large multicenter dataset with over 4,000 European Covid-19 patients from the LEOSS registry. We find an accuracy of 28 percent and approximately 15 percent sensitivity for the ward class. The results serve as a benchmark for our extensions including an additional category of palliative care as a new label, analytics, AI, XAI, and interactive techniques. We find significant potential of analytics and AI in Covid-19 triage regarding accuracy, sensitivity, and other performance metrics whilst our interactive human-AI algorithm shows superior performance with approximately 73 percent accuracy and up to 76 percent sensitivity. The results are independent of the data preparation process regarding the imputation of missing values or grouping of comorbidities. In addition, we find that the consideration of an additional label palliative care does not improve the results.
Keyphrases
- emergency department
- palliative care
- end stage renal disease
- endothelial cells
- artificial intelligence
- big data
- machine learning
- sars cov
- deep learning
- newly diagnosed
- ejection fraction
- coronavirus disease
- chronic kidney disease
- healthcare
- induced pluripotent stem cells
- peritoneal dialysis
- prognostic factors
- pluripotent stem cells
- advanced cancer
- high resolution
- electronic health record
- gestational age
- adverse drug
- solid phase extraction