Transcriptomics and proteomics reveal distinct biology for lymph node metastases and tumour deposits in colorectal cancer.
Nelleke Pietronella Maria BrouwerLoth WebbinkTariq Sami HaddadNatasja RutgersShannon van VlietColin S WoodPascal Wtc JansenMaxime W Lafargenull nullJohannes Hw de WiltNiek HugenFemke SimmerNigel B JamiesonDaniele Vf TaurielloViktor H KölzerMichiel VermeulenIris D NagtegaalPublished in: The Journal of pathology (2023)
Both lymph node metastases (LNMs) and tumour deposits (TDs) are included in colorectal cancer (CRC) staging, although knowledge regarding their biological background is lacking. This study aimed to compare the biology of these prognostic features, which is essential for a better understanding of their role in CRC spread. Spatially resolved transcriptomic analysis using digital spatial profiling was performed on TDs and LNMs from 10 CRC patients using 1,388 RNA targets, for the tumour cells and tumour microenvironment. Shotgun proteomics identified 5,578 proteins in 12 different patients. Differences in RNA and protein expression were analysed, and spatial deconvolution was performed. Image-based consensus molecular subtype (imCMS) analysis was performed on all TDs and LNMs included in the study. Transcriptome and proteome profiles identified distinct clusters for TDs and LNMs in both the tumour and tumour microenvironment segment, with upregulation of matrix remodelling, cell adhesion/motility, and epithelial-mesenchymal transition (EMT) in TDs (all p < 0.05). Spatial deconvolution showed a significantly increased abundance of fibroblasts, macrophages, and regulatory T-cells (p < 0.05) in TDs. Consistent with a higher fibroblast and EMT component, imCMS classified 62% of TDs as poor prognosis subtype CMS4 compared to 36% of LNMs (p < 0.05). Compared to LNMs, TDs have a more invasive state involving a distinct tumour microenvironment and upregulation of EMT, which are reflected in a more frequent histological classification of TDs as CMS4. These results emphasise the heterogeneity of locoregional spread and the fact that TDs should merit more attention both in future research and during staging. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Keyphrases
- lymph node
- epithelial mesenchymal transition
- poor prognosis
- single cell
- regulatory t cells
- end stage renal disease
- stem cells
- ejection fraction
- newly diagnosed
- long non coding rna
- signaling pathway
- prognostic factors
- neoadjuvant chemotherapy
- mass spectrometry
- peritoneal dialysis
- dendritic cells
- healthcare
- gene expression
- induced apoptosis
- early stage
- randomized controlled trial
- machine learning
- cell proliferation
- transforming growth factor
- radiation therapy
- sentinel lymph node
- pet ct
- endoplasmic reticulum stress
- current status
- escherichia coli
- cell adhesion
- microbial community