Water-in-oil (W/O) Pickering emulsions were successfully synthesized by water-dispersible phytosterol (PS) particles formed through simple antisolvent precipitation. The effects of the organic/aqueous ratio on the particle morphology, crystallinity, and contact angle were investigated. Sheet-like PS particles with reduced crystallinity were further used as W/O Pickering emulsion stabilizers. The properties of the formed W/O emulsions could be transformed by changing the oil type, water-phase fraction, or particle contents. Results showed that emulsions with 80% water fraction could be stabilized by 3% particles in the aqueous phase, where dodecane was used as the oil phase. W/O Pickering emulsions stabilized by PS particles showed temperature responsiveness. When dried, PS particles could be well dispersed either in the water or oil phase to stabilize W/O Pickering emulsions. Therefore, this kind of PS particles could not only enrich the family of food-grade Pickering stabilizers, especially the W/O type, but also provide a smart Pickering stabilizer to fabricate environmental-responsive emulsion products.