Login / Signup

Impact of Nonthermal Plasma Treatment on the Oxidation of Lipids with Different Unsaturation Degrees.

Danyang LiuJoke SierensChristelle HaydamousAnton NikiforovNathalie De GeyterBruno De Meulenaer
Published in: Journal of agricultural and food chemistry (2024)
Nonthermal plasma (NTP) treatment of food presents a new technology for the industry but raises concerns about lipid oxidation due to the presence of reactive species. Considering the critical role of the degree of unsaturation in lipid oxidation, this study investigates NTP-induced oxidation across various unsaturated lipids. These lipids are six oil samples primarily containing one of the following methylesters: oleate, linoleate, linolenate, arachidonate, eicosapentaenoate, and docosahexaenoate. Samples were treated with a nonthermal surface dielectric barrier discharge. Plasma-induced effects were first examined by classical lipid oxidation indicators, such as the peroxide value and p -anisidine value. The specific volatile oxidation products, including hexanal, nonanal, trans-2-hexenal, and methyl 9-oxononanoate, were determined to further elucidate the impact of ozone-related oxidation. Monitoring the production of selected nonvolatile oxidation products, such as epoxy-, oxo-, and hydroxy fatty acid methylesters, confirmed that plasma treatment facilitated the decomposition of lipid hydroperoxide. Generally, the level of plasma-induced oxidation increased in parallel with the unsaturation degree of the studied samples, except for the quantity of individual volatile carbonyls. The long-term effect of NTP treatment was investigated by a stability test, revealing that the oxidative stability depended on the input gas of plasma treatment, the sensitivity of the treated sample, and the presence of antioxidants. Except for the focus on the NTP impact, this study offered a case study of a comprehensive investigation into lipid oxidation.
Keyphrases
  • fatty acid
  • hydrogen peroxide
  • high glucose
  • endothelial cells
  • electron transfer
  • oxidative stress
  • visible light
  • drug induced
  • tandem mass spectrometry
  • ionic liquid
  • single molecule
  • room temperature