Unique lipid composition maintained by extracellular blockade leads to prooncogenicity.
Kai KudoRyo YanagiyaMasanori HasegawaJoaquim CarrerasYoshimi MikiShunya NakayamaEtsuko NagashimaYuji MiyatakeKan ToriiKiyoshi AndoNaoya NakamuraAkira MiyajimaMakoto MurakamiAi KotaniPublished in: Cell death discovery (2024)
Lipid-mediated inflammation is involved in the development and malignancy of cancer. We previously demonstrated the existence of a novel oncogenic mechanism utilizing membrane lipids of extracellular vesicles in Epstein-Barr virus (EBV)-positive lymphomas and found that the lipid composition of lymphoma cells is skewed toward ω-3 fatty acids, which are anti-inflammatory lipids, suggesting an alteration in systemic lipid composition. The results showed that arachidonic acid (AA), an inflammatory lipid, was significantly reduced in the infected cells but detected at high levels in the sera of EBV-positive patients lead to the finding of the blockade of extracellular AA influx by downregulating FATP2, a long-chain fatty acid transporter that mainly transports AA in EBV-infected lymphoma cells. Low AA levels in tumor cells induced by downregulation of FATP2 expression confer resistance to ferroptosis and support tumor growth. TCGA data analysis and xenograft models have demonstrated that the axis plays a critical role in several types of cancers, especially poor prognostic cancers, such as glioblastoma and melanoma. Overall, our in vitro, in vivo, in silico, and clinical data suggest that several cancers exert oncogenic activity by maintaining their special lipid composition via extracellular blockade.
Keyphrases
- fatty acid
- epstein barr virus
- diffuse large b cell lymphoma
- induced apoptosis
- data analysis
- cell cycle arrest
- oxidative stress
- end stage renal disease
- cell death
- endoplasmic reticulum stress
- chronic kidney disease
- transcription factor
- poor prognosis
- molecular docking
- machine learning
- cell proliferation
- squamous cell carcinoma
- prognostic factors
- childhood cancer
- patient reported outcomes
- binding protein
- squamous cell