Login / Signup

Anti-EGFR Fibronectin Bispecific Chemically Self-Assembling Nanorings (CSANs) Induce Potent T Cell-Mediated Antitumor Responses and Downregulation of EGFR Signaling and PD-1/PD-L1 Expression.

Ozgun KilicMarcos Romário Matos de SouzaAbdulaziz A AlmotlakYiao WangJill M SiegfriedMark D DistefanoCarston R Wagner
Published in: Journal of medicinal chemistry (2020)
Overexpression of the epidermal growth factor receptor (EGFR) on various cancers makes it an important target for cancer immunotherapy. We recently demonstrated that single-chain variable fragment-based bispecific chemically self-assembled nanorings (CSANs) can successfully modify T cell surfaces and function as prosthetic antigen receptors (PARs) allowing selective targeting of tumor antigens while incorporating a dissociation mechanism of the rings. Here, we report the generation of anti-EGFR fibronectin (FN3)-based PARs with high yield, rapid protein production, predicted low immunogenicity, and increased protein stability. We demonstrated the cytotoxicity of FN3-PARs successfully while evaluating FN3 affinities, CSAN valencies, and antigen expression levels. Using an orthotopic breast cancer model, we showed that FN3-PARs can suppress tumor growth with no adverse effects and FN3-PARs reduced immunosuppressive programmed cell death ligand-1 (PD-L1) expression by downregulating EGFR signaling. These results demonstrate the potential of FN3-PARs to direct selective T cell-targeted tumor killing and to enhance antitumor T cell efficacy by modulating the tumor microenvironment.
Keyphrases