Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated alpha-ketoglutarate by suppressing alpha-ketoglutarate dehydrogenase (α-KGDH) activity. Deletion of OGDH, which encodes α-KGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for α-KGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced translation of MCL-1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitivity to ONC213 in vivo. Collectively these findings support further development of ONC213 for treating AML.