Login / Signup

Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02.

Caiming LiXiaofeng BanYu-Zhu ZhangZhengbiao GuYan HongLi ChengXiaoshu TangZhaofeng Li
Published in: Journal of agricultural and food chemistry (2020)
Disulfide bonds play crucial roles in thermostabilization, recognition, or activation of proteins. They are vital in maintaining the respective conformations of globular structures, thereby enhancing thermostability. Bioinformatic approaches provide practical strategies to build disulfide bonds based on structural information. We constructed nine mutants by rational analysis of the 1,4-α-glucan branching enzyme (EC 2.4.1.18) from Geobacillus thermoglucosidans STB02, which catalyzes the synthesis of α-1,6-glucosidic bonds by acting on α-(1,4) and/or α-(1,6) glucosidic linkages. Four of the mutations enhanced thermostability, and five of them had adverse or negligible effects on stability. Circular dichroism spectra and intrinsic fluorescence analysis showed that introducing disulfide bonds might only affect secondary structures. The results also demonstrated that the distances of Cα carbons and thiol groups, as well as the sequence between the two cysteines, need to be considered when designing disulfide bonds.
Keyphrases
  • high resolution
  • transition metal
  • healthcare
  • wastewater treatment
  • health information
  • density functional theory
  • social media
  • amino acid
  • quantum dots
  • drug induced
  • adverse drug