Physical and functional interactome atlas of human receptor tyrosine kinases.
Kari SalokasXiaonan LiuTiina ÖhmanIftekhar ChowduryLisa M GawriyskiSalla KeskitaloMarkku VarjosaloPublished in: EMBO reports (2022)
Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
Keyphrases
- mass spectrometry
- single cell
- protein kinase
- tyrosine kinase
- cell surface
- high resolution
- cell therapy
- endothelial cells
- signaling pathway
- high throughput
- mental health
- binding protein
- healthcare
- stem cells
- physical activity
- capillary electrophoresis
- amino acid
- high density
- electronic health record
- machine learning
- epithelial mesenchymal transition
- big data
- deep learning
- high performance liquid chromatography
- hiv testing
- wild type
- men who have sex with men
- recombinant human
- pluripotent stem cells