Login / Signup

The epigenetic evolution of glioma is determined by the IDH1 mutation status and treatment regimen.

Tathiane Maistro MaltaThais S SabedotNatalia S MorosiniIndrani DattaLuciano GarofanoWies R VallentgoedFrederick S VarnKenneth D AldapeFulvio D'AngeloSpyridon BakasJill S Barnholtz-SloanHui Kong GanMohammad HasanainAnn-Christin HauKevin C JohnsonSimona CazacuAna C deCarvalhoMustafa KhasrawEmre KocakavukMathilde C M KouwenhovenSimona MigliozziSimone P NiclouJohanna M NiersDavid Ryan OrmondSun Ha PaekGuido ReifenbergerPeter A E Sillevis SmittMarion SmitsLucy F SteadMartin J Van Den BentErwin G Van MeirAnnemiek M E WalenkampTobias WeissMichael WellerBart A WestermanBauke YlstraPieter WesselingAnna LasorellaPim J FrenchLaila M PoissonThe Glass ConsortiumRoel G W VerhaakAntonio IavaroneHoutan Noushmehr
Published in: Cancer research (2023)
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histological progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neo-angiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution towards an IDHwt-like phenotype.
Keyphrases
  • dna methylation
  • gene expression
  • genome wide
  • high grade
  • low grade
  • stem cells
  • copy number
  • transcription factor
  • wild type
  • free survival
  • replacement therapy