Effect of Microbubble Size, Composition and Multiple Sonication Points on Sterile Inflammatory Response in Focused Ultrasound-Mediated Blood-Brain Barrier Opening.
Payton J MartinezJane J SongJair CastilloJohn DeSistoKang-Ho SongAdam L GreenMark BordenPublished in: bioRxiv : the preprint server for biology (2024)
Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB+FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNAseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 μm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 μm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.
Keyphrases
- blood brain barrier
- inflammatory response
- cerebral ischemia
- drug delivery
- mouse model
- magnetic resonance imaging
- magnetic resonance
- lipopolysaccharide induced
- machine learning
- poor prognosis
- deep learning
- emergency department
- gene expression
- signaling pathway
- optic nerve
- computed tomography
- binding protein
- small molecule
- subarachnoid hemorrhage
- immune response
- copy number
- genome wide
- high resolution
- fatty acid
- atomic force microscopy
- drug release
- high speed