Evaluation of a Standard Dietary Regimen Combined with Heat-Inactivated Lactobacillus gasseri HM1, Lactoferrin-Producing HM1, and Their Sonication-Inactivated Variants in the Management of Metabolic Disorders in an Obesity Mouse Model.
Wei-Chen ShiuZhen-Shu LiuBo-Yuan ChenYu-We KuPo-Wen ChenPublished in: Foods (Basel, Switzerland) (2024)
This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.
Keyphrases
- weight loss
- insulin resistance
- high fat diet
- physical activity
- poor prognosis
- mouse model
- high glucose
- metabolic syndrome
- randomized controlled trial
- high fat diet induced
- oxidative stress
- risk assessment
- endothelial cells
- heat stress
- weight gain
- high resolution
- long non coding rna
- climate change
- skeletal muscle
- double blind
- single molecule
- cell free
- copy number
- mass spectrometry
- placebo controlled
- gestational age