Login / Signup

Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces.

Xinjian FanYihui JiangMingtong LiYunfei ZhangChenyao TianLiyang MaoHui XieLining SunZhan YangMetin Sitti
Published in: Science advances (2022)
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR's scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M 3 RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
Keyphrases