Login / Signup

Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by Lactobacillus plantarum WCFS1 MelA α-Galactosidase.

Paloma Delgado-FernandezBlanca de Las RivasRosario MuñozMaría Luisa JimenoElisa García DoyagüezNieves CorzoFrancisco Javier Moreno
Published in: Journal of agricultural and food chemistry (2021)
This work describes the high capacity of MelA α-galactosidase from Lactobacillus plantarum WCFS1 to transfer galactosyl residues from melibiose to the C6-hydroxyl group of disaccharide-acceptors with β-linkages (lactulose, lactose, and cellobiose) or α-linkages (isomaltulose and isomaltose) to produce novel galactose-containing hetero-oligosaccharides (HOS). A comprehensive nuclear magnetic resonance characterization of the transfer products derived from melibiose:lactulose reaction mixtures revealed the biosynthesis of α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose as the main component as well as the presence of α-d-galactopyranosyl-(1 → 3)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose and α-d-galactopyranosyl-(1 → 6)-α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose. Melibiose-derived α-galactooligosaccharides (α-GOS), manninotriose and verbascotetraose, were also simultaneously synthesized. An in vitro assessment of the intestinal digestibility of the novel biosynthesized HOS revealed a high resistance of α-galactosides derived from lactulose, lactose, cellobiose, and isomaltulose. According to the evidence gathered for conventional α-GOS and certain disaccharides used as acceptors in this work, these novel nondigestible α-galactosides could be potential candidates to selectively modulate the gut microbiota composition, among other applications, such as low-calorie food ingredients.
Keyphrases
  • magnetic resonance
  • single cell
  • human health
  • risk assessment
  • weight loss
  • cell wall
  • electron transfer