Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT.
Chenchen DaiYing XiongPingyi ZhuLinpeng YaoJinglai LinJiaxi YaoXue ZhangRisheng HuangRun WangJun HouKang WangZhang ShiFeng ChenJianming GuoMengsu ZengJianjun ZhouShuo WangPublished in: Radiology (2024)
Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) ( P = .61); for the prospective test set, AUC was 0.87 (95% CI: 0.79, 0.93) versus 0.92 (95% CI: 0.86, 0.96) ( P = .70). For subcentimeter lesions in the external test set, the algorithm and urological radiologists had similar AUC of 0.74 (95% CI: 0.63, 0.83) and 0.81 (95% CI: 0.68, 0.92) ( P = .78), respectively. Conclusion The multiphase CT-based DL algorithm showed comparable performance with that of radiologists for identifying benign small renal masses, including lesions of 1 cm or less. Published under a CC BY 4.0 license. Supplemental material is available for this article.
Keyphrases
- contrast enhanced
- deep learning
- diffusion weighted
- magnetic resonance imaging
- computed tomography
- magnetic resonance
- machine learning
- diffusion weighted imaging
- artificial intelligence
- dual energy
- end stage renal disease
- ejection fraction
- newly diagnosed
- randomized controlled trial
- convolutional neural network
- big data
- cross sectional
- high resolution
- emergency department
- prognostic factors
- clinical trial
- case report
- electronic health record
- lymph node
- pet ct
- peritoneal dialysis
- fine needle aspiration
- adverse drug
- systematic review