Spermidine is essential for fasting-mediated autophagy and longevity.
Sebastian J HoferIoanna DaskalakiMartina BergmannJasna FriščićAndreas ZimmermannMelanie I MuellerMahmoud AbdellatifRaffaele NicastroSarah MasserSylvère DurandAlexander NarteyMara WaltenstorferSarah EnzenhoferIsabella FaimannVerena GschielThomas BajajChristine NiemeyerIlias GkikasLukas PeinGiulia CerratoHui PanYongTian LiangJelena TadicAndrea JerkovicFanny AprahamianChristine E RobbinsNitharsshini NirmalathasanHansjörg HabischElisabeth AnnererFrederik DethloffMichael StumpeFranziska GrundlerFrançoise Wilhelmi de ToledoDaniel E HeinzDaniela A KoppoldAnika M HartmannAndreas MichalsenNorbert J TripoltHarald SourijThomas R PieberRafael de CaboMark A McCormickChristoph MagnesOliver KeppJoern DengjelStephan J SigristNils Christian GassenSimon SedejTobias MadlClaudio De VirgilioUlrich StelzlMarkus H HoffmannTobias EisenbergNektarios TavernarakisGuido KroemerFrank MadeoPublished in: Nature cell biology (2024)
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Keyphrases
- blood glucose
- insulin resistance
- cell death
- endoplasmic reticulum stress
- signaling pathway
- oxidative stress
- human health
- risk assessment
- endothelial cells
- transcription factor
- adipose tissue
- metabolic syndrome
- type diabetes
- gene expression
- high fat diet induced
- skeletal muscle
- glycemic control
- genome wide
- drosophila melanogaster
- high glucose
- diabetic rats
- multidrug resistant
- genetic diversity
- stress induced
- pluripotent stem cells