Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review.
Zheng LiMuxin YueYunsong LiuPing ZhangJia QingHao LiuYongsheng ZhouPublished in: Gels (Basel, Switzerland) (2022)
Organoids are novel in vitro cell culture models that enable stem cells (including pluripotent stem cells and adult stem cells) to grow and undergo self-organization within a three-dimensional microenvironment during the process of differentiation into target tissues. Such miniature structures not only recapitulate the histological and genetic characteristics of organs in vivo, but also form tissues with the capacity for self-renewal and further differentiation. Recent advances in biomaterial technology, particularly hydrogels, have provided opportunities to improve organoid cultures; by closely integrating the mechanical and chemical properties of the extracellular matrix microenvironment, with novel synthetic materials and stem cell biology. This systematic review critically examines recent advances in various strategies and techniques utilized for stem-cell-derived organoid culture, with particular emphasis on the application potential of hydrogel technology in organoid culture. We hope this will give a better understanding of organoid cultures for modelling diseases and tissue engineering applications.