Exploring the toxicity profile of coriander ( C. sativum L.) essential oil: implications for translational toxicological research.
David H X BarbosaDanielle da Nóbrega AlvesPatrícia N AndradeMarianna Vieira SobralIsione Oliveira CastroGleycyelly Rodrigues AraújoSeverino Mathias de AlencarFernanda Papa SpadaAndré A Dos SantosPedro Luiz RosalenRicardo Dias de CastroPublished in: Drug and chemical toxicology (2024)
The plant species C. sativum L. is a staple in cuisine and holds significant ethnopharmacological value. Its essential oil (EO) is of particular interest, yet its toxicity profile remains a subject of inquiry. This study aimed to elucidate the chemical constituents of C. sativum L. EO and evaluate its toxicity through various parameters, including cytotoxicity assays on HaCaT keratinocytes, in vivo toxicity tests on Galleria mellonella larvae, in vivo genotoxicity assessments on mice and cytotoxicity assays on human erythrocytes. Notably, major constituents such as 2-decen-1-ol, dec-(2E)-enal, and 1,6-octadien-3-ol were found to remain predominant. The IC 50 value for the essential oil on the keratinocyte cell line was determined to be 60.13 ± 2.02 µg/mL. However, in vivo toxicity tests with G. mellonella larvae demonstrated safety at doses below 4.5 g/kg. Additionally, genotoxicity assessment revealed that a single dose of 20 mg/mL (5 mg/kg) did not induce a significant increase in micronuclei formation. EO concentrations above 250 µg/mL led to significant changes in human erythrocytes cell viability ( p < 0.0001), resulting in over 60% hemolysis. These findings collectively suggest that the essential oil of C. sativum L. exhibits a suitable toxicity profile for conducting preclinical studies in vertebrate animal models.