Login / Signup

Geniposide Improves Glucose Homeostasis via Regulating FoxO1/PDK4 in Skeletal Muscle.

Yan LiHaiou PanXuetong ZhangHui WangShengnan LiuHui ZhangHaifeng QianLi WangHao Ying
Published in: Journal of agricultural and food chemistry (2019)
It is well-known that imbalance state of glucose metabolism triggers many metabolic diseases and glucose uptake in skeletal muscle accounts for 90% of body weight. Geniposide is one of the major natural bioactive constituents of gardenia fruit, and the regulation of geniposide on glucose metabolism in skeletal muscle has not yet been investigated. Here, on the basis of microarray analysis, we discovered that geinposide decreased pyruvate dehydrogenase kinase 4 (PDK4) expression in skeletal muscle of mice and subsequently found that geniposide inhibited the expressions of forkhead box O1 (FoxO1), PDK4, and phosphorylated pyruvate dehydrogenase in vitro and in vivo. Moreover, geniposide promoted a switch of slow-to-fast myofiber type and glucose utilization, suggesting that geniposide improved glucose homeostasis. In addition, mechanistic studies revealed that geniposide played above roles by regulating FoxO1/PDK4, which controlled fuel selection via pyruvate dehydrogenase. Meanwhile, effects of geniposide mentioned above could be reversed by FoxO1 overexpression. Together, these results establish that geniposide confers controls on fuel usage and glucose homeostasis through FoxO1/PDK4 in skeletal muscle.
Keyphrases