Login / Signup

Evidence for secondary-variant genetic burden and non-random distribution across biological modules in a recessive ciliopathy.

Maria KousiOnuralp SöylemezAysegül OzanturkNiki MourtziSebastian AkleIrwin JungreisJean MullerChristopher A CassaHarrison BrandJill Anne RosenfeldMaxim Y WolfAzita SadeghpourKelsey McFaddenRichard A LewisMichael E TalkowskiHélène DollfusManolis KellisErica E DavisShamil R SunyaevNicholas Katsanis
Published in: Nature genetics (2020)
The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.
Keyphrases