Calpains mediate isoproterenol-induced hypertrophy through modulation of GRK2.
David AlujaJavier InsertePetronila PenelaPaula RamosCatalina RibasMiguel Ángel IñiguezFederico MayorDavid Garcia-DoradoPublished in: Basic research in cardiology (2019)
Inhibition of the Ca2+-dependent proteases calpains attenuates post-infarction remodeling and heart failure. Recent data suggest that calpain activity is elevated in non-ischemic cardiomyopathies and that upregulation of the key cardiac G-protein-coupled receptor kinase 2 (GRK2) signaling hub promotes cardiac hypertrophy. However, the functional interactions between calpains and GRK2 in this context have not been explored. We hypothesized that calpain modulates GRK2 levels in myocardial hypertrophy of non-ischemic cause, and analyzed the mechanisms involved and the potential therapeutic benefit of inhibiting calpain activity in this situation. The oral calpain inhibitor SNJ-1945 was administered daily to male Sprague-Dawley rats or wild-type and hemizygous GRK2 mice treated with 5 mg/Kg/day isoproterenol intraperitoneally for 1 week. In isoproterenol-treated animals, calpains 1 and 2 were overexpressed in myocardium and correlated with increased calpain activity and ventricular hypertrophy. Oral co-administration of SNJ-1945 attenuated calpain activation and reduced heart hypertrophy as assessed using morphological and biochemical markers. Calpain activation induced by isoproterenol increased GRK2 protein levels, while genetic downregulation of GRK2 expression prevented isoproterenol-mediated hypertrophy independently of calpain inhibition. GRK2 upregulation was associated to calpain-dependent degradation of the GRK2 ubiquitin ligase MDM2 and to enhanced NF-κB-dependent GRK2 gene expression in correlation with calpain-mediated IĸB proteolysis. These results demonstrate that calpain mediates isoproterenol-induced myocardial hypertrophy by modulating GRK2 protein content through mechanisms involving the control of GRK2 stability and expression. Sustained calpain inhibition attenuates isoproterenol-induced myocardial hypertrophy and could be an effective therapeutic strategy to limit ventricular remodeling of non-ischemic origin.
Keyphrases
- heart failure
- left ventricular
- signaling pathway
- gene expression
- poor prognosis
- binding protein
- type diabetes
- wild type
- machine learning
- cell proliferation
- atrial fibrillation
- clinical trial
- physical activity
- big data
- randomized controlled trial
- immune response
- electronic health record
- deep learning
- pi k akt
- protein protein