Distinct Serum Glial Fibrillary Acidic Protein and Neurofilament Light Time-Courses After Rapid Head Rotations.
Colin M HuberAkshara D ThakoreR Anna OeurStephanie A PasquesiPublished in: Journal of neurotrauma (2024)
Traumatic brain injury (TBI) causes significant neurophysiological deficits and is typically associated with rapid head accelerations common in sports-related incidents and automobile accidents. There are over 1.5 million TBIs in the United States each year, with children aged 0-4 being particularly vulnerable. TBI diagnosis is currently achieved through interpretation of clinical signs and symptoms and neuroimaging; however, there is increasing interest in minimally invasive fluid biomarkers to detect TBI objectively across all ages. Pre-clinical porcine models offer controlled conditions to evaluate TBI with known biomechanical conditions and without comorbidities. The objective of the current study was to establish pediatric porcine healthy reference ranges (RRs) of common human serum TBI biomarkers and to report their acute time-course after nonimpact rotational head injury. A retrospective analysis was completed to quantify biomarker concentrations in porcine serum samples collected from 4-week-old female ( n = 215) and uncastrated male ( n = 6) Yorkshire piglets. Subjects were assigned to one of three experimental groups (sham, sagittal-single, sagittal-multiple) or to a baseline only group. A rapid nonimpact rotational head injury model was used to produce mild-to-moderate TBI in piglets following a single rotation and moderate-to-severe TBI following multiple rotations. The Quanterix Simoa Human Neurology 4-Plex A assay was used to quantify glial fibrillary acidic protein (GFAP), neurofilament light (Nf-L), tau, and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). The 95% healthy RRs for females were calculated and validated for GFAP (6.3-69.4 pg/mL), Nf-L (9.5-67.2 pg/mL), and UCH-L1 (3.8-533.7 pg/mL). Rising early, GFAP increased significantly above the healthy RRs for sagittal-single (to 164 and 243 pg/mL) and increased significantly higher in sagittal-multiple (to 494 and 413 pg/mL) groups at 30 min and 1 h postinjury, respectively, returning to healthy RRs by 1-week postinjury. Rising later, Nf-L increased significantly above the healthy RRs by 1 day in sagittal-single (to 69 pg/mL) and sagittal-multiple groups (to 140 pg/mL) and rising further at 1 week (single = 231 pg/mL, multiple = 481 pg/mL). Sagittal-single and sagittal-multiple UCH-L1 serum samples did not differ from shams or the healthy RRs. Sex differences were observed but inconsistent. Serum GFAP and Nf-L levels had distinct time-courses following head rotations in piglets, and both corresponded to load exposure. We conclude that serum GFAP and Nf-L offer promise for early TBI diagnosis and intervention decisions for TBI and other neurological trauma.
Keyphrases
- traumatic brain injury
- severe traumatic brain injury
- signaling pathway
- lps induced
- mild traumatic brain injury
- optic nerve
- oxidative stress
- nuclear factor
- minimally invasive
- pi k akt
- randomized controlled trial
- cerebrospinal fluid
- endothelial cells
- machine learning
- depressive symptoms
- physical activity
- clinical trial
- neuropathic pain
- early onset
- double blind
- immune response
- high throughput
- spinal cord
- amino acid
- sensitive detection
- loop mediated isothermal amplification
- blood brain barrier
- big data
- single cell
- deep learning
- sleep quality
- study protocol