Login / Signup

Evaluating two multistrain probiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in chickens.

Seyed Amin KazemiHamed AhmadiMohammad Amir Karimi Torshizi
Published in: Journal of animal physiology and animal nutrition (2019)
An experiment was conducted to investigate the supplementation of two commercially available multistrain probiotics as an alternative to antibiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in broiler chickens. A total of 280-day-old ROSS 308 mixed-sex broiler chickens with an average initial body weight of 42 ± 0.5 g were randomly divided into four treatments with five replicate cages of 14 birds each cage in a completely randomized design and fed with the following diets for 42 day: (a) control (CON) (antibiotic-free diet), (b) antibiotic (ANT) (CON + Avilamycin 150 g/ton feed), (c) probiotic A (CON + Protexin® 150 g/ton feed) and (d) probiotic B (CON + Bio-Poul® 200 g/ton feed). The results showed the broilers fed the ANT diet had greater average daily gain than broilers fed the CON diet during day 1-14 (p < 0.05). At day 42, two birds were randomly selected per replicate for evaluation intestinal morphology, lipid oxidation and ileal microflora. birds fed diet supplemented with probiotic A and probiotic B increased villus height and goblet cells numbers in the jejunum and villus height to crypt depth ratio and villus height in the ileum as compared to birds fed CON diet (p < 0.05). The malondialdehyde value was reduced (p < 0.05) in the ANT, probiotic B and probiotic A groups compared with the CON group. The Lactobacillus population was increased and Clostridium spp. population decreased in the ileum of broilers fed diets containing the probiotic B and probiotic A compared with those fed CON diet (p < 0.05). The results from this study indicate that the probiotic A (Protexin® ) and probiotic B (Bio-Poul® ) used in this trial may serve as alternatives to ANT.
Keyphrases