The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB.
Yukari OkitaMinori KimuraRudy XieChen ChenLarina Tzu-Wei ShenYurika KojimaHiroyuki SuzukiMasafumi MurataniMasao SaitohKentaro SembaCarl-Henrik HeldinMitsuyasu KatoPublished in: Science signaling (2017)
Triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat. For example, the transforming growth factor-β (TGF-β) pathway is implicated in TNBC progression and metastasis, but its opposing role in tumor suppression in healthy tissues and early-stage lesions makes it a challenging target. Therefore, additional molecular characterization of TNBC may lead to improved patient prognosis by informing the development and optimum use of targeted therapies. We found that musculoaponeurotic fibrosarcoma (MAF) oncogene family protein K (MAFK), a member of the small MAF family of transcription factors that are induced by the TGF-β pathway, was abundant in human TNBC and aggressive mouse mammary tumor cell lines. MAFK promoted tumorigenic growth and metastasis by 4T1 cells when implanted subcutaneously in mice. Overexpression of MAFK in mouse breast epithelial NMuMG cells induced epithelial-mesenchymal transition (EMT) phenotypes and promoted tumor formation and invasion in mice. MAFK induced the expression of the gene encoding the transmembrane glycoprotein nmb (GPNMB). Similar to MAFK, GPNMB overexpression in NMuMG cells induced EMT, tumor formation, and invasion, in mice, whereas knockdown of MAFK in tumor cells before implantation suppressed tumor growth and progression. MAFK and GPNMB expression correlated with poor prognosis in TNBC patients. These findings suggest that MAFK and its target gene GPNMB play important roles in the malignant progression of TNBC cells, offering potentially new therapeutic targets for TNBC patients.
Keyphrases
- epithelial mesenchymal transition
- transforming growth factor
- poor prognosis
- transcription factor
- induced apoptosis
- end stage renal disease
- early stage
- signaling pathway
- high glucose
- cell cycle arrest
- long non coding rna
- newly diagnosed
- endothelial cells
- diabetic rats
- chronic kidney disease
- drug induced
- peritoneal dialysis
- gene expression
- breast cancer cells
- genome wide identification
- dna binding
- endoplasmic reticulum stress
- prognostic factors
- amino acid
- genome wide
- cell migration
- patient reported outcomes
- small molecule
- case report
- lymph node
- binding protein
- skeletal muscle
- stress induced
- genome wide analysis