Identification of depression subtypes and relevant brain regions using a data-driven approach.
Tomoki TokudaJunichiro YoshimotoYu ShimizuGo OkadaMasahiro TakamuraYasumasa OkamotoShigeto YamawakiKenji DoyaPublished in: Scientific reports (2018)
It is well known that depressive disorder is heterogeneous, yet little is known about its neurophysiological subtypes. In the present study, we identified neurophysiological subtypes of depression related to specific neural substrates. We performed cluster analysis for 134 subjects (67 depressive subjects and 67 controls) using a high-dimensional dataset consisting of resting state functional connectivity measured by functional MRI, clinical questionnaire scores, and various biomarkers. Applying a newly developed, multiple co-clustering method to this dataset, we identified three subtypes of depression that are characterized by functional connectivity between the right Angular Gyrus (AG) and other brain areas in default mode networks, and Child Abuse Trauma Scale (CATS) scores. These subtypes are also related to Selective Serotonin-Reuptake Inhibitor (SSRI) treatment outcomes, which implies that we may be able to predict effectiveness of treatment based on AG-related functional connectivity and CATS.
Keyphrases
- resting state
- functional connectivity
- depressive symptoms
- bipolar disorder
- randomized controlled trial
- sleep quality
- magnetic resonance imaging
- systematic review
- quantum dots
- mental health
- highly efficient
- cross sectional
- computed tomography
- physical activity
- drug induced
- magnetic resonance
- combination therapy
- intimate partner violence