Login / Signup

Improving shikonin solubility and stability by encapsulation in natural surfactant-coated shikonin nanoparticles.

Jie HeYoufa XieJunzhen ZhongWenrong ChenSuqiong FangXing ChenShengfeng PengWei LiuChengmei Liu
Published in: Journal of food science (2023)
It is significant to develop a colloidal delivery system to improve the water solubility, stability, and bioavailability of shikonin, which is a hydrophobic plant polyphenol with a variety of physiological activities. In this study, three kinds of natural surfactants (saponin, sophorolipid, and rhamnolipid) were used to prepare shikonin nanoparticles by the pH-driven method. The physicochemical and structural properties of the shikonin nanoparticles were characterized, including particle size, zeta potential, and morphology. The encapsulation efficiencies of shikonin nanoparticles coated with saponin and sophorolipid were 97.6% and 97.3%, respectively, which were much higher than that of rhamnolipid-coated shikonin nanoparticles (19.0%). Shikonin nanoparticles coated with saponin and sophorolipid showed good resistance to heat and light and maintained long-term stability during storage. Moreover, shikonin nanoparticles coated with saponin and sophorolipid improved their in vitro-bioavailability. PRACTICAL APPLICATION: These article results are of great importance for improving the stability and bioavailability of shikonin in functional foods, dietary supplements, or pharmaceutical preparations. Moreover, this study provided theoretical and practical guides for further research of shikonin nanoparticles and may promote the development of natural colloidal delivery systems.
Keyphrases
  • walled carbon nanotubes
  • climate change
  • water soluble