Base-Induced Transformation of 2-Acyl-3-alkyl-2H-azirines to Oxazoles: Involvement of Deprotonation-Initiated Pathways.
Yingtang NingYuko OtaniTomohiko OhwadaPublished in: The Journal of organic chemistry (2017)
An experimental study of base-induced transformation reaction of 2-acyl-3-alkyl-2H-azirines to oxazoles indicated that a deprotonation-initiated mechanism is involved, in addition to nucleophilic addition to the imine functionality. Calculations suggested the participation of a ketenimine (ethenimine) intermediate generated by azirine ring opening of the carbanion intermediate formed by α-deprotonation of 2H-azirine. The ketenimine intermediate possessing methyl substituents at C(3) appears to be more stable than the tautomeric nitrile ylide which was proposed to be involved in photoinduced and pyrolysis reactions of 2-acyl-3-alkyl-2H-azirines to afford oxazoles. Thus, intermediacy of ketenimine is consistent with both experimental and computational results, at least under strongly basic reaction conditions.