Login / Signup

Quantitative Proteomics Reveals Molecular Network Driving Stromal Cell Differentiation: Implications for Corneal Wound Healing.

Krishnatej NishtalaTrailokyanath PanigrahiRohit ShettyDhanananajay KumarPooja KhamarRajiv R MohanVrushali DeshpandeArkasubhra Ghosh
Published in: International journal of molecular sciences (2022)
The differentiation of keratocytes to fibroblasts and myofibroblasts is an essential requisite during corneal wound closure. The aim of this study is to uncover factors involved in differentiation-dependent alteration in the protein profile of human corneal stromal cells using quantitative proteomics. Human corneal fibroblasts were cultured and differentiated into keratocytes in serum-free media and myofibroblasts through treatment with TGF-β. The protein cell lysates from the donors were tryptic and were digested and labeled using a 3-plex iTRAQ kit. The labeled peptides were subjected to LCMS analysis. Biological functional analysis revealed a set of crucial proteins involved in the differentiation of human corneal stromal cells which were found to be significantly enriched. The selected proteins were further validated by immunohistochemistry. Quantitative proteomics identified key differentially expressed proteins which are involved in cellular signaling pathways. Proteins involved in integrin signaling (Ras-RAP1b, TLN and FN) and SLIT-ROBO pathways (PFN1, CAPR1, PSMA5) as well as extracellular matrix proteins (SERPINH1, SPARC, ITGβ1, CRTAP) showed enhanced expression in corneal fibroblasts and myofibroblasts compared to keratocytes, indicating their possible role in wound healing. Corneal stromal cell differentiation is associated with the activation of diverse molecular pathways critical for the repair of fibroblasts and myofibroblasts. Identified proteins such as profilin 1 and talin could play a tentative role in corneal healing and serve as a potential target to treat corneal fibrosis.
Keyphrases