Login / Signup

Effect of Protein Corona on Nanoparticle-Lipid Membrane Binding: The Binding Strength and Dynamics.

Hwankyu Lee
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
All-atom molecular dynamics simulations of the 10 nm-sized anionic polystyrene (PS) particle complexed with plasma proteins (human serum albumin, immunoglobulin gamma-1 chain-C, and apolipoprotein A-I) adsorbed onto lipid bilayers [asymmetrically composed of extracellular (zwitterionic) and cytosolic (anionic) leaflets] are performed. Free energies calculated from umbrella sampling simulations show that proteins on the particle more weakly bind to the zwitterionic leaflet than do bare particles, in agreement with experiments showing the suppression of the particle-bilayer binding by protein corona. Proteins on the particle interact more strongly with the anionic leaflet than with the zwitterionic leaflet because of charge interactions between cationic protein residues and anionic lipid headgroups, to an extent dependent on various plasma proteins. In particular, hydrogen bonds between proteins and zwitterionic leaflets restrict the motion of lipids and thus reduce the lateral dynamics of bilayers, while the tight binding between proteins and anionic leaflets disrupts the helical structure of proteins and disorders lipids, leading to an increase in the lateral dynamics of bilayers. These findings help explain the experimental observation regarding the fact that the bilayer dynamics decreases when interacting with protein corona and suggest that the effect of protein corona on the binding strength and bilayer dynamics depends on protein types and bilayer charges.
Keyphrases