CRISPR/Cas9-Mediated Knock-Out of the MtCLE35 Gene Highlights Its Key Role in the Control of Symbiotic Nodule Numbers under High-Nitrate Conditions.
Maria A LebedevaDaria A DobychkinaLyudmila A LutovaPublished in: International journal of molecular sciences (2023)
Legume plants have the ability to establish a symbiotic relationship with soil bacteria known as rhizobia. The legume-rhizobium symbiosis results in the formation of symbiotic root nodules, where rhizobia fix atmospheric nitrogen. A host plant controls the number of symbiotic nodules to meet its nitrogen demands. CLE (CLAVATA3/EMBRYO SURROUNDING REGION) peptides produced in the root in response to rhizobial inoculation and/or nitrate have been shown to control the number of symbiotic nodules. Previously, the MtCLE35 gene was found to be upregulated by rhizobia and nitrate treatment in Medicago truncatula , which systemically inhibited nodulation when overexpressed. In this study, we obtained several knock-out lines in which the MtCLE35 gene was mutated using the CRISPR/Cas9-mediated system. M. truncatula lines with the MtCLE35 gene knocked out produced increased numbers of nodules in the presence of nitrate in comparison to wild-type plants. Moreover, in the presence of nitrate, the expression levels of two other nodulation-related MtCLE genes, MtCLE12 and MtCLE13 , were reduced in rhizobia-inoculated roots, whereas no significant difference in MtCLE35 gene expression was observed between nitrate-treated and rhizobia-inoculated control roots. Together, these findings suggest the key role of MtCLE35 in the number of nodule numbers under high-nitrate conditions, under which the expression levels of other nodulation-related MtCLE genes are reduced.