Login / Signup

Specific Microbiota Dynamically Regulate the Bidirectional Gut-Brain Axis Communications in Mice Fed Meat Protein Diets.

Yunting XieGuang-Hong ZhouChao WangXinglian XuChunbao Li
Published in: Journal of agricultural and food chemistry (2018)
The purpose of this study was to characterize the dynamic changes of different protein diets to gut microbiota and explore the influence on communications between the gut and the brain. C57BL/6J mice were fed casein, soy protein, and four kinds of processed meat proteins at a normal dose of 20% for 8 months. Bacteroidales S24-7 abundance increased from 4 to 8 months, whereas the abundances of six genera including Akkermansia decreased remarkably. Lachnospiraceae Unclassified abundance in the emulsion-type sausage protein and stewed pork protein groups showed an opposite change from 4 to 8 months. Twenty-eight and 48 specific operational taxonomy units in cecum and colon respectively were involved in regulating serotonin, peptide YY, leptin, and insulin levels. Specific microbiota was involved, directly or indirectly through signaling molecules, in the regulation of body metabolism, which may affect the communications between the gut and brain and cause different growth performances.
Keyphrases