Global targeting of functional tyrosines using sulfur-triazole exchange chemistry.
Heung Sik HahmEmmanuel K ToroitichAdam L BorneJeffrey W BruletAdam H LibbyKun YuanTimothy B WareRebecca L McCloudAnthony M CianconeKu-Lung HsuPublished in: Nature chemical biology (2019)
Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g., cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome.
Keyphrases
- small molecule
- protein protein
- living cells
- fluorescence imaging
- amino acid
- single molecule
- mass spectrometry
- endothelial cells
- fluorescent probe
- drug discovery
- induced apoptosis
- nucleic acid
- high throughput
- cell proliferation
- cancer therapy
- oxidative stress
- quality improvement
- label free
- binding protein
- health insurance
- pluripotent stem cells
- single cell