Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum .
Samuel C UzoechiBruce A RosaKumar Sachin SinghYoung-Jun ChoiBethany K BrackenPaul J BrindleyR Reid TownsendRobert W SprungBin ZhanMaria-Elena BottazziJohn M HawdonYide WongAlex LoukasSergej DjuranovicMakedonka MitrevaPublished in: Pathogens (Basel, Switzerland) (2023)
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm's excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum , which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum . The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.
Keyphrases
- endothelial cells
- mass spectrometry
- genome wide
- anti inflammatory
- induced pluripotent stem cells
- poor prognosis
- pluripotent stem cells
- binding protein
- transcription factor
- high resolution
- amino acid
- gene expression
- human health
- rna seq
- plasmodium falciparum
- dna methylation
- liquid chromatography
- artificial intelligence
- density functional theory
- current status
- molecular dynamics
- high performance liquid chromatography
- genetic diversity