Login / Signup

High serum free fatty acids and low leptin levels: Plausible metabolic indicators of negative energy balance in early lactating Murrah buffaloes.

Naresh GollaAlka ChopraSanjanna BoyaThota Venkata Chaitanya KumarSuneel Kumar OnteruDheer Singh
Published in: Journal of cellular physiology (2019)
Lactation is a highly demanding event in mammals, including buffaloes. It modulates the partitioning of nutrients, energy utilization, and food intake of the mother to meet her own and infant's energy needs. Failure to satisfy these energy needs leads to Negative Energy Balance (NEB). Currently, the only available indirect NEB indicator is Body Condition Score (BCS). However, direct dependency of the BCS on the peak depletion of body fat causes its inefficient use in a dairy farm. Thus, to establish objective NEB indicators in buffaloes, the serum levels of biochemical (serum β-hydroxybutyrate [BHBA] and free fatty acids [FFAs]), and endocrine (Growth Hormone [GH], insulin-like growth factor1 [IGF1], Insulin, and leptin) parameters were estimated in buffaloes. Our results revealed that serum FFA levels were significantly (p < 0.05) higher in high milk yielders (HMY) than low milk yielders (LMY) and heifers (H) during the 3rd and the 4th weeks of postpartum. The serum FFA levels were also significantly (p < 0.001) higher in the postpartum buffaloes with BCS < 3 in the field conditions. Further, serum leptin levels were significantly (p < 0.05) lower in HMY than LMY during the 3rd week of postpartum. However, the BHBA, GH, IGF1, and insulin levels were not significantly different between lactating buffaloes and H. These observations indicated that the NEB condition is probably restricted to the first month of early lactation in buffaloes. In conclusion, the simultaneous higher FFA and lower leptin levels could act as direct plausible metabolic indicators of NEB in buffaloes.
Keyphrases
  • growth hormone
  • fatty acid
  • type diabetes
  • randomized controlled trial
  • clinical trial
  • human milk
  • cell proliferation
  • insulin resistance
  • weight loss
  • binding protein
  • study protocol