Login / Signup

Simple Method for Preparing Starch Inclusion Complexes with Enhanced Amylolysis Resistance and Antioxidant Properties.

Huilan ZhuJinglin YuLes CopelandShujun Wang
Published in: Biomacromolecules (2024)
Slow-digesting starch with bioactive functionality has been attracting much interest with the increasing incidence of type-2 diabetes and other diet-related illnesses. The present study demonstrates a simple method for preparing a starch inclusion complex with reduced enzymic digestion and enhanced antioxidant activities using debranched pea starch (PS) and 10-gingerol (10G). Enzymically debranched starch complexed more 10G and formed more structurally ordered starch-10G complexes compared to PS that had not been debranched. Debranching for 6 h resulted in starch with better complexing ability for 10G than starches debranched for longer times. The debranched starch-10G complexes had higher antioxidant activities and a much slower in vitro enzymic digestion profile (rate and hydrolysis extent) than the 10G complex prepared with starch that was not debranched. Our study demonstrates that debranched pea starch-10G complexes with slow-digesting and antioxidant properties are likely to be of interest for developing ingredients for healthier food choices.
Keyphrases
  • oxidative stress
  • lactic acid
  • anti inflammatory
  • risk factors
  • anaerobic digestion
  • tissue engineering